

Biochemical Engineering Exercise Session 2

1) Design aspects of a bioreactor

A stirred tank bioreactor is approximately cylindrical in shape. It has a total volume (V_t) of 100,000 liters. The geometry of the reactor is defined by the following ratios:
 $D_t:H_t=0,5$; $D_a:D_t=0,33$; $D_b:D_t = 0,1$

- Is it an aerated system?
- Is this type of bioreactor advantageous for mammalian cells?
- Calculate: D_t , H_t , D_a , D_b

2) Cell concentration in aerobic culture

A strain of *Azotobacter vinelandii* is cultured in a 15m³ stirred Fermenter for alginate production. Under current operating conditions k_{LA} is 0.17 s⁻¹. Oxygen solubility in the broth is approx. 8×10^{-3} kg m⁻³.

a) The specific rate of oxygen uptake is $12.5 \text{ mmol g}^{-1} \text{ h}^{-1}$. What is the maximum possible cell concentration?

b) The bacteria suffer growth inhibition after copper sulphate is accidentally added to the fermentation broth. This causes a reduction in oxygen uptake rate to $3 \text{ mmol g}^{-1} \text{ h}^{-1}$. What maximum cell concentration now be supported by the fermenter?

3) Specific oxygen uptake in *E. coli* culture

It is assumed that the specific oxygen uptake rate (q_{O_2}) of *E. coli* is $5.0 \text{ mmol g}^{-1} \text{ h}^{-1}$.

- Which cell concentration X can be reached in a laboratory reactor with a k_{La} of 25 h^{-1} when $C_L = 10 \% C^*$ and for the medium at 37°C is $C^* = 0.17 \text{ mmol L}^{-1}$.

4) Oxygen consumption

Estimate how fast the dissolved oxygen concentration is consumed in a bioreactor with $k_{La} 1000 \text{ h}^{-1}$, containing a 10 g L^{-1} culture growing with $\mu = 0.5 \text{ h}^{-1}$ if the aeration is interrupted.

- Calculate the quasi-steady state oxygen concentration. Assume $Y_{XO} = 1 \text{ g g}^{-1}$ and the oxygen solubility in the medium equilibrium with $C^* = 7 \text{ mg L}^{-1}$.
- In what time will the culture become completely anaerobic?

5) Oxygen storage capacity of fermentation broth

With a OTR (=OUR) of growing bacteria of $1 \text{ g O}_2 (\text{L} \cdot \text{h})^{-1}$ per 1 g L^{-1} cell dry mass and approximately 100 g L^{-1} cell dry mass at the end of the growth phase, an oxygen uptake rate of 100 g (g L)^{-1} will develop. The oxygen solubility in the fermentation broth at 28°C is calculated at 7.76 mg L^{-1} .

a) How long will the oxygen supply last?

Note: OUR per 1 g cell dry weight = q_{O_2}

6) Calculating saturation concentration

Calculation of the oxygen saturation concentration at different temperatures and partial oxygen pressures using the correlation of Truesdale:

T [°C]	28	37	60	28	37	60
P _{O₂} [bar]	0.2121	0.2121	0.2121	1.0133	1.0133	1.0133
C* _{O₂} [mg L ⁻¹]						

7) Oxygen transfer in a sparged stirred tank bioreactor

Which of the following would have the highest oxygen transfer rate characteristics?

- a) A sparged stirred tank bioreactor being stirred at 200 rpm
- b) A non-sparged stirred tank bioreactor being stirred at 200 rpm
- c) A shake flask being mixed at 200 rpm
- d) All of the above would have equivalent oxygen transfer rate characteristics